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ABSTRACT

This paper contains (1) a physical argument to show that the one-eddy MLT model underestimates the
convective flux F_ in the high-efficiency regime, while it overestimates F, in the low-efficiency regime, and
(2) a new derivation of the F (MLT) using a turbulence model in the one-eddy approximation. (3) We
forsake the one-eddy approximation and adopt the Kolmogorov spectrum to represent the turbulent
energy spectrum. The resulting F, > F (MLT) in the high-efficiency regime, and F, < F,(MLT) in the
low-efficiency case, are in agreement with the physical arguments concerning the one-eddy MLT model.
(4) By forsaking the Kolmogorov model and solving a two-point closure model, one obtains the CM
model. The F(CM) satisfies (1). F (CM) corresponds to a “tilt” in efficiency space of F.(MLT), an effect
that cannot be achieved by changing «. We discuss the astrophysical tests of the CM model.

(5) Concerning the laboratory turbulent convection, we show that the CM model provides a better fit
than the MLT to recent high Rayleigh number (Ra) laboratory data on convection. (6) Concerning non-
local convection, the most complete model available is the one-point closure model (Reynolds stress
model), which entails five differential equations for the five second-order moments. We present the solu-
tion corresponding to the local, stationary case. The results are expressed analytically in terms of Ko
(Kolmogorov constant), Pe (Peclet number), and S (convective efficiency).

(7) We find that the superadiabatic temperature gradient is given by —0T/dr — ¢, 'g” where the renor-
malized ¢" = g(1 + g~ *p~'dp,/dz) and p, is the turbulent pressure. This result, which follows naturally
from the Reynolds stress approach, contrasts with previous empirical suggestions to include p,. (8) We
derive new expressions for the turbulence pressure using two different turbulence models and (9) we
show that the often used Kolmogorov-Prandt! expression for the turbulent diffusivity is valid only in the
high convective efficiency limit. We derive a new expression valid for arbitrary Peclet numbers. (10) We
derive an expression for the flux conservation law, which includes F(KE), the flux of turbulent kinetic
energy, a third-order moment for which we provide a new expression. (11) No model has thus far
accounted for the influence on F, due to the presence of a stable layer (radiative layer) bordering the

convective zone. We work out the first such model, and (12) we discuss topics for future research.
Subject headings: convection — stars: interiors — turbulence

1. TURBULENCE

Turbulence is not an intrinsic property of a “flow in
motion.” This implies that in order to be generated and
maintained, turbulence requires a source of energy. We call
€ the energy per gram, per second, needed to keep a turbu-
lent state from decaying in time. In general, this energy is
fed at the largest scales that are sensitive to the specific
nature of the external force, have the longest lifetime, are
affected by the geometry of the system, and are mostly diffu-
sive rather than dissipative, that is, are unaffected by molec-
ular processes (e.g., viscosity). By contrast, small scales
{eddies) are insensitive to the specific nature of the stirring
force but not to the total amount of energy fed into the
system, have shorter lifetimes, are not affected by the
geometry of the system, and are dissipative rather than dif-
fusive; that is, they are affected by molecular processes.
Through the action of the nonlinear terms in the Navier-
Stokes equations (NSEs), the energy input e is distributed,
mainly cascaded, to the smaller entities, so that at any given
time, small, medium, and large eddies coexist. This process
of energy distribution results in an energy (density) spec-
trum E(k), where the wavenumber k is roughly related to the
inverse of the “ size of the eddy.” The integral of E(k) over all
eddy sizes yields the total turbulent kinetic energy

K =12 = Jdk E(k) , (1a)

385

and a major challenge of a turbulent model is the derivation
of the spectral function E(k).

Can E(k) be represented by a §-function, or, equivalently,
how wide is the eddy spectrum? If L and ! represent the
largest and smallest (so defined that it is affected by
dissipation), we have (see below)

% = Re¥4. (1b)
In stellar interiors, Re ~ 109, the width is greater than 107,
which can hardly be represented by a é-function.

One of the fundamental properties of the nonlinear inter-
actions is that they conserve energy. This means that the
energy fed at the largest scales remains unchanged during
the “cascade ” process, with the result that € must ultimate-
ly be dissipated by the physical mechanisms operating at
the smallest scales; that is, molecular viscosity, which causes
€ to be dissipated into heat. Viscosity enters the NSE as
—vV2u;; once we multiply the NSE by u; to obtain the
energy equation, the above statement corresponds to saying
that

€=2v szE(k)dk , (a)

where the k? factor comes from the V2. Equation (2a) may
lead one to conclude that when v is exceedingly small, as in
stellar interiors, € is correspondingly small, or even worse,
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that when v — 0, € vanishes. This is an incorrect inference where dissipation occurs. Since this process occurs because

since equation (2a) only states that for a given value of e, of viscosity, one has only two variables at one’s disposal, €

determined by the source, dissipation occurs predominantly and v (cm? s~ 1), and it thus follows that

at large wavenumbers, that is at the smallest scales. One can N1/4

also interpret equation (2a) as a statement of I, = (V_> (3a)
€

oduction = dissipation . 2b
procduction issipation (2b) Since on the other hand, we also have that

e=UYT=UL!, (3b)
we derive (Re = ULv™1Y)

The quantity multiplying 2v is the integral of the enstrophy
(mean-square vorticity),

w(k) = k*E(k) , (2¢)

L
and since this quantity increases as v — 0, the right-hand 7= Re¥*, (4a)

side of equation (2a) remains finite for any v, as expected, 4
since the amount of energy input into a system is considered which is equation (1b). Thus, the smaller the viscosity, the
independent of the viscosity of the system. larger the ration L/I,. Figure 1 exhibits several illustrative
The fact that the energy fed at the largest scales remains cases with different viscosities; o = v/x is the molecular
unchanged by the nonlinear interactions is of great rele- Prandtl number which for the Sun is ¢ = 10™° (Massaguer
vance. It implies, among other things, that it can be used to 1990), while for air is ¢ = 0.7. As one can see, the smaller the
construct a “dissipation scale” I; characterizing the scales v, the wider the spectrum width is and the less reliable a

E(k)
10°

E (k)

E(k)
E(K) | © - 0% d) o =10°
z s =10'°
1+
MLT
10
162k }
g2 1 ) 1 1 1 1
ol ¥ i0 07108 16510
k k

Fic. 1.—Four examples of turbulent kinetic energy spectra E(k) vs. k computed with the EDQNM model. The MLT approximation consists of using a
Dirac -function for E(k). We recall that S = ¢ Ra, where ¢ is the Prandt] number and Ra is the Rayleigh number. The value of ¢ in the Sun is around 10~1°
but the results saturate at ¢ ~ 1073, Clearly, the higher the viscosity, the better the MLT approximation.
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J-function representation,
E(k) = Eqd(k/ko — 1), (4b)

whose validity (if any) is restricted to the case of low Rey-
nolds number and large viscosities, quite the opposite of
what one encounters in stellar interiors. On this basis alone,
one can justifiably have doubts about the reliability of the
mixing length theory (MLT) as a faithful representation of
stellar turbulent convection.

2. MIXING LENGTH THEORY

Here, we study the consequences of equation (4b). Calling
H_ the convective flux F, in units of ¢, p,

H,=wl, (5a)

where w and 6 are the fluctuating velocity (in the z-
direction) and temperature fields, it is easy to show that
(Yamaguchi 1963)

H, = L Jw2[w(k) + vk¥}E(k)dk , (5b)
g& Jio

where « is the volume expansion coefficient (=T~ for a
perfect gas) and w(k) is the rate of energy input into the
system. Thus,

gawl = J 2[w(k) + vKZ]E(k)dk . (5¢)
ko

Because of equations (2a)—(2b), where production = gawl

and dissipation = e, it follows that

J 20(k)E(k)dk = 0, (5d)
ko

which is satisfied only if w(k) has both positive (low k’s) and
negative components (high k’s). This is indeed the case
(Canuto et al. 1991, Fig. 1; Canuto & Mazzitelli 1991
[hereafter CM], eq. [18]). Let us return to equation (5b)
and consider the choice of w(k). We have two timescales:

ty=(gaf)™ ", ty=—~—3. (62)

The first is the buoyancy timescale (f is the superadiabatic
gradient), while the second is the radiative timescale. Here,
is the thermometric conductivity, K/c,p, where K is the
radiative conductivity. We note that since the ratio

t

t" = (gafp)' PPy, (6b)
b
we have
£ \? 4
(t—’<> _02PC_ i Ra=s, (60)
b 4

where Ra is the Rayleigh number (=gapl*/vy). The dimen-
sionless function § is related to the convective efficiency T’
by the relation, £ = 25/81 (Cox & Giuli 1968),

r=4ia+x42-17. (6d)
In the limit of high (low) efficiency, we have
I»l, X<1, (6e)

which we shall treat separately.
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2.1. High-Efficiency Regimet, < t,

In this case, t, does not enter the problem. Physically, this
regime corresponds to a situation whereby an eddy, a heat
bubble, travels without losing heat via radiative processes.
This can occur only if the buoyancy timescale is much
shorter than the time ¢, it takes for the radiative losses to
occur. In this case we can identify

wlky~t ", (6f)
so that equation (5b) gives
ﬁ 1/2
H, ~ (—) JE(k)dk . (6g)
go

From Figure 2 we can observe that since in this limit the
spectral function E(k) is usually very wide, assuming the
d-function (4b) is bound to underestimate the integral in
equation (6g). Thus, irrespectively of the detailed form of the
full spectrum E(k), one can conclude that

H,(MLT) < H (full spectrum) . (7

In the high-efficiency limit, the MLT underestimates the con-
vective flux.

2.2. Low-Efficiency Limit

In this case, the derivation of w(k) is somewhat more
delicate since even though

t, <ty, (8a)

the buoyancy timescale z, must still be present since it rep-
resents the timescale of the source of instability. Thus, w(k)
must be a combination of both ¢, and t,. The simplest
expression consists of reducing the high-efficiency limit (6f)
by the ratio t,/t,. We thus write

k) ~ t; 1<t—1) 9% ) (8b)

b

The growth rate decreases like k2 (Fig. 3). If one uses a full
spectrum E(k), the k~* dependence gets weighted appropri-
ately. However, if one uses an MLT J§-function peaked at
the largest eddy, as in the high-efficiency limit, one is
actually weighing the low k region more than one should,
with the consequence that one overestimates the convective

Ek)

k

F1G. 2—The energy spectrum E(k) must be multiplied by the rate of
energy input w(k) in order to obtain the convective flux. In the case of
highly efficient convection, w(k) ~ constant and so the use of a -function
approximation leads to underestimate the total kinetic energy and thus the
flux.
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FI1G. 3.—In the case of inefficient convection, m(k) ~ k™2, the §-function
approximation peaked at the same k, as in the case of Fig. 2, gives an
overestimate of the convective flux.

flux. Thus, on general grounds, one can conclude that
H ,(MLT) > H (full spectrum) . 9

In the low efficiency limit, the MLT overestimates the convec-
tive flux.

For completeness, we recall the MLT form of F, (Gough
& Weiss 1976),

H, = 280, (10a)
OMLT) = $a, T 1[(1 + )2 —1]*,  (10b)
where (a, = 9/4) and
2 I
=25, 5= 104w v, oo
81 X
2 g\ K 4acT?
= — | — R =, K = s IOd
9 <2Hp> * CpP 3xkp 109

where [ is the mixing length, x is the opacity, and all the
other symbols have their usual meaning. We also recall that
equations (6f) and (8b) are indeed the limiting cases of
the general expression for the convective growth rate
(Yamaguchi 1963; CM, eq. [18])

20(k) = —xk*(1 + 0) + [x2k*(1 — 0)* + dgapr(x)]*/?,
(11)

where 7(x) = x(1 + x)~! with x = kZ/k%, where k, is the
horizontal wavenumber.

3. DERIVATION OF THE MLT FLUX AS A
ONE-EDDY MODEL

In this section, we justify the statement that equation (5b),
together with equations (4b) and (11), implies the MLT
expression (10b). We begin by considering that at any wave-
number k, the energy input from all the eddies smaller than
k~!is given by (see eq. [5¢])

k

f 2[w(k) + vk*]E(k)dk . (12a)

ko
Since we must have a balance, the nonlinear interactions
must distribute the energy (12a) to all the eddies larger than
k~1. Thus, we must equate equation (12a) to the “transfer
function” T'(k), which represents the effect of the nonlinear
interactions. The most familiar model for T(k) is the one
originally proposed by Heisenberg (Batchelor 1971) and

Vol. 467

recovered by all subsequent more complete turbulence
models (Lesieur 1990). Its form is

T(k) = 2[v + v,(k)] rsz(k)dk , (12b)

which may be viewed as the extension of the molecular
dissipation term,

k
2v f k2E(k)dk , (12¢)
ko
to include a k-dependent turbulent viscosity v(k),
v—ov+ (k). (12d)

Several models for v(k) have been derived over the years
(Howells 1960; Canuto, Goldman, & Chasnov 1988;
Lesieur 1990; Canuto & Dubovikov 1996a, b, c), and the
general form is

vE=vi4y J‘ E(p)p~*dp . (12€)
k

The fact that v,(k) is contributed by all eddies smalier than

k~'is an indication that the major contribution comes from

the ultraviolet region while the infrared region is contrib-

uting to the energy input (eq. [12a]). The value of y is 2.
Equating equation (12a) to (12b), we have the highly non-

linear equation for E(k),

f "ol + RPIE®RK = [v + (0] f “KeEdk . (120)
ko ko

Using equation (4b), equation (12e) can easily be solved
with the result

Eo =y 'wgks . (12g)
Using equations (5b), (11), and gaH, = € = gawd = gafy®,
we derive, after some algebra,

P=Cy2 N1+~ 173, Cx=y""x(1+x7",

(13)

which proves that the MLT expression (10b) can indeed be
derived from a turbulence model under the one-eddy
approximation (4b).

4. USE OF THE KOLMOGOROV SPECTRUM FOR E(k)

After the one-eddy MLT model and before using a full
turbulence model to compute the kinetic energy spectrum
E(k), the next step is to use the Kolmogorov spectrum,

E(k) = Ko €2Pk53 (14a)

where Ko is the Kolmogorov constant whose latest deter-
mination yields (Praskovsky & Oncley 1994)

1.59 < Ko < 1.88 . (14b)

As shown in Figure 1, a low-viscosity system (like stellar
interiors), is dominated for a large fraction of the k spectrum
by a Kolmogorov inertial regime, and thus equation (14a) is
a good intermediate step between equation (4b) and the
more complete model to be discussed in the next section.

Inserting equations (11) and (14a) into (5b), we obtain
after some algebra (v — 0)

3 3 4x
o= 3
<4KO) 1+xI ’

(14c)
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F1G. 4—The convective flux of the CM model vs. the MLT. As one can
see, the CM model does provide both a higher flux at high S and a lower
flux at low S, as suggested by the arguments that led to Figs. 2 and 3.

where the dimensionless integral [ is given by
I= J dfQ + ¢ 32 1], a=X Y. (14d)

Integration by parts in equation (14d) allows us to rewrite
equation (14¢) in the form

4 1+ x

which exhibits the structure of equation (13) but with the
addition of the new function ¢ given by

o= (E Ko)3 s e 176, (o)

¢ =3Z[(1 + X2 — 1]‘1J 31 + X731,
1

(14f)

Using equation (13), we now have

D 8(3 3
=-|-K 3,
OMLT) 5 (4 °> ¢
The presence of ¢ causes ® to be larger (smaller) than the
MLT flux. In fact, since

(14g)

T> 1438, T<l:¢>o1, (14h)
we derive
0} Ko\?
1 = 18( =2 14i
> L ML) 8(1.5) ’ (14)
0)] Ko\?
T <l —03(>22) . 14i
<L oML (1.5) (14))

As we shall see, the more complete model confirms the
general results, equations (141)-(14j) (in the £ > 1 regime,
the factor is 11 rather than 18, while in the £ < 1 regime, the
factor is 0.1 rather than 0.3). Numerical evaluation of equa-
tion (14f) yields the following results: for £ = 1072, 1071, 1,
10, 102, 103, 10%, we have ¢* = 0.125, 0.13, 0.172, 0.387,
0.974, 1.964, 3.158, respectively.

5. FULL TURBULENT SPECTRUM: THE CM AND CGM
MODELS AND ASTROPHYSICAL TESTS

Recently, two attempts have been made to bypass the
MLT one-eddy approximation and the Kolmogorov law by
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solving a full turbulence model (CM; Canuto, Goldman, &
Mazzitelli 1996 [hereafter CGM]) using a description of the
nonlinear interactions more complete than the Heisenberg
model (12b). As discussed in detail in Appendix B of CM,
the transfer T(k) is contributed by four terms of which equa-
tion (12b) is just the first (specifically, eq. [B.9] of CM). The
CMDis

BCM) = a,E"[(1 + a, )" — 1] (152)

with: a,; = 24.868, a, =9.7661072, m = 0.14972,
n=0.18931, np + m = 3. In Figure 4, we show ®(CM)/
O(MLT) versus X. The newest CGM flux @ is given by

®CGM) = aS™[(1 + bSy" — 177
x [1 + ¢S%1 + dS) ™! + eS(L + fS%) 17, (15b)

with  a=10.8654, b =0.00489073, ¢ =0.010871,
d = 0.00301208, e = 0.000334441, f=0.000125 while the
exponents are m = 0.149888, n = 0.189238, p = 1.85011,
g=072, r=092, s=12, and t = 1.5. The new models
satisfy equations (7) and (9). In the two limits of interest, we
have, using equation (10b):

S»1:
®MLT) = 0.1768'2 ,
OICM) = 1.7351/%
Ko\3/ o, }*
DCGM) = 1.685{ — ) { == ] S'? 1
(CGM) 685(1.5) (0'72) ,  (159)
S<1:

O(MLT) = 8.57 x 107582,
BCM) = 0942 x 107552,

3
P(CGM) = 2.65 x 10“5<Il(—§> 52 .
The CM model has been tested on several grounds com-
prising stellar structure and evolution, helioseismology and
stellar atmospheres (D’Antona, Mazzitelli, & Gratton 1992;
D’Antona & Mazzitelli 1994; Basu & Antia 1994; Baturin
& Miranova 1995; Rosenthal et al. 1995; Stothers & Chin
1995; Monteiro, Christensen-Dalsgaard, & Thompson
1995; Canuto & Kupka 1996; Smalley 1995; Althaus &
Benvenuto 1996). In all cases, the CM model performs
better than the MLT. In addition, while the MLT has an
adjustable parameter o, the CM has none, since the mixing
length [ is taken [ = z, where z is the distance to the nearest
“wall,” where stratification changes from unstable to stable.
In § 7 we shall present a new test of the MLT and CM-like
models.

(15d)

6. FLUX TILTING IN EFFICIENCY SPACE

Figure 4 shows that the new flux (eq. [15a]) corresponds
to a “tilting” of the MLT curve rather than a simple
increase or decrease. The convective flux is larger in the
high-efficiency regime and smaller in the low-efficiency
regime, an effect that cannot be achieved by changing «.

7. LABORATORY TEST OF MLT AND CM MODELS

In this section, we test both MLT and CM models
against laboratory convection data. In Figure 5, the two
plates at a distance D are kept at a fixed temperature differ-
ence 8T > 0. Laboratory data (using helium) for the turbu-
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y=n —

y=D/2

N

y=0

F16. 5—The geometry of laboratory convection. The temperature dif-
ference between the two plates is §T > 0; we have called § the viscous
layer.

lent heat transport are presented in the form (Castaing et al.
1989)

Nu =c¢ Ra", (16a)

where the Nusselt number Nu is the total heat flux H, in
units of x 8T/D,

H

Nu = m , (16b)
Ra is the experimentally known Rayleigh number,
Ra = 99T ps (16¢)
L4
and H, is given by (with § = —0T/dz),
H; = Heong + Heogny = 1B + 1BO(S) , (16d)

where the first term represents heat conduction and the
second convection. The specific convection model enters
through the function ®. Since the latter depends on g, equa-
tion (16d) is a differential equation for the temperature
whose solution yields the function T(z). Since ® depends on
S and thus on [ (eq. [6c]), the latter must be specified in
terms of z. We suggest the form

l=g(z—9), (17a)

where ¢ is the thickness of the viscous sublayer (see Fig. 5)
for which we adopt the Kolmogorov expression

3\1/4
=)
€

and where € is computed at the middle of the layer (denoted
by subscript M)

y=9,

(17b)

€e=¢ = gafipy 1Dy (17¢)

y=(1/2)D
The quantity ®,, is short for ®(Z,,) and
Sy = g“X_ZﬂMAil s Ay = Q(%D -9 %QD ., (17d)

since D > §; the parameter g will be taken equal to 2, but it
is carried along for generality purposes. Since H, = 8
equation (16d) at mid-channel gives

max Xa

Binax = Ba(l + @yy) . (18a)
Using equation (16b), equation (18a) becomes
#(39* RaNu=Z(1 + D,,). (18b)

Vol. 467

Once a given model for convection—that is, a ®(Z)—is
chosen, the solution of equation (18b) yields

2y versus Nu Ra . (18¢)

After some manipulations, the thickness of the viscous layer
4 (eq. [17b]) can be expressed as

% = (Ra Nu)" V41 + @, 1)1+, (18d)
Next, we compute 6T. We have by definition
(1/2)D é (1/2)D
T= J B(z)dz = J Blz)dz + j B(zydz , (19a)
0 0 [
or, taking f(z) constant in the first interval,

(1/2)D
ST =2T =28...6+2 J Bz)dz.  (19b)
(]

Substituting H, = xf,,., = x 6T Nu/D (eq. [16b]), and using
the variable x = B/,...., equation (19b) becomes

Nu = ¢(Ra) Ra'/?, (20a)
where
23 =(1+ 0, + 171, (20b)
where the integral I is given by
(1/2)D
I = (Ra Nu)V4p~1 J x(z)dz . (20c)
0
From equation (16d) with H,= yB..,, Wwe obtain

x(z) = [1 + ®Z)]~'. Next, change z/D to Y = (z — 8)/D
and thento X,

Z=(57q"(1 + ®)' Ra Nu ¥*. (20d)

Finally,

I-—<£>1/4J2M1 = _1121 (X))} 4 ax
=(3g) | D+omn 5 s+ om)

(20e)

To carry out the calculation, it is convenient to introduce
the variable ¥ = NuRa, so that equation (20a) becomes

¥ = ¢(¥) Ra*? . (21)

After choosing a convective model for ®(Z), one first
solves equation (18b) to obtain X,, versus ¥, which is then
used in equation (20e); I(¥) is then obtained and so is ¢(P).
Equation (21) is then used to compute the corresponding
Ra, which, once inserted in ¥ yields the corresponding Nu.
The Nu versus Ra relationship thus follows. The results
presented in Table 1 correspond to very large Ra, in which
case ¢(Ra) — c. The Ra dependence of ¢ leads to a power less

TABLE 1

THE NUSSELT NUMBER VERSUS RAYLEIGH
NUMBER RELATIONSHIPS

Ra Nu (exp) CM MLT
10°............. 7.75 4.9 3.8
107, 15 10.5 82
108 ...l 29 23 18
10%.. e, 56.3 49 383
1070 ... 109 105.5 824
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than 3 in equation (20a). The data are from Castaing et al.
(1989).

The CM model provides a better fit than the MLT. For
an early comparison of MLT versus lab data, see Tooth &
Gough (1988). Due to smallness of the Prandtl number ¢
and the fact that the quantity of interest is S = ¢ Ra, the
region of major interest for example in helioseismology is
around S ~ 1 or less.

8. NONLOCAL, TIME-DEPENDENT, THEORY OF
CONVECTION : THE REYNOLDS STRESS MODEL

The CM model is based on a two-point closure model,
the EDQNM model, which has been extensively tested in
many turbulent flows (Lesieur 1990) but which is limited to
homogeneous and isotropic (or slightly anisotropic) flows.
An approach that does not suffer from these limitations,
and which is therefore more suited to study cases where
inhomogeneities (nonlocal effects) dominate and have
important consequences (the overshooting in stars), and
which has been successfully used to describe types of turbu-
lent flows, is the one-point, second-order closure model
based on the Reynolds stress method. The dynamic equa-
tions for the second-order moments

h; = u,0 (convective flux), 67 (temperature variance) ,
7;; = u;u; (Reynolds stress) ,
K = %1; (turbulent kinetic energy)
(Canuto 1992, 1993, 1994) are described below.

8.1. General Equations
The first is the Reynold stress equation, 7;; = u; u;:

D
D T+ Dy = ah; g} + ah;g; — 11

where the pressure-velocity correlation II; (a third-order
moment) is given by

IL; = 2C4T_Ibij + 5 0gy Oy by + O hy — %5ijhk) , (22b)

€, (22a)

ij— Cijo

b=1,;—30;K, (22¢)
€; = 5€8;; . (22d)
Here, ¢" is the renormalized gravity given by
0
gi=9;+ x. Tij - (22¢)

j
The diffusion term D, a third-order moment representing

nonlocality, will be discussed below. The heat flux equation
is

D . 5 1 0
l_)—thi+Df=Tijﬁj+‘xgi02_H?+5x—éx_f
where the pressure-temperature correlation IT¢ is given by
(23Db)

Here, p7 is the renormalized superadiabatic gradient defined
by

hi s (233)

19 = 2¢co v h; + c, g, 6% .

oT 1 oT 1 0
= g _Ha+—z.)

which we shall discuss below.
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The temperature variance, 02, is given by

P®E.ip = 2h, B — 2€, + a—zﬁ (24)
Dt Jo o X ox:
The hydrostatic equilibrium equation (P = P, + P4)is
opP
=9 (25a)
ax;

The mean temperature equation is
D 0 rad conv KE
—D_t(cpT+K)= _6_x-[Fj + F$™ + F7°], (25b)
J

where the radiative, convective, and kinetic fluxes are
defined by (c, px = K,a4)

oT _
rada’ F;OHV=CpPuj9’ F§E=
J

2

F= —K pqu; .

N[ =

(25¢)

All the diffusion terms are defined and expressed in terms of
the second-order moments by equations (71)-(76) of
Canuto (1993). As one can see, these new expressions can
easily absorb the renormalized parts of each g” and thus,
from now on, we shall call them D" and restore the g’s in the
right-hand sides of eqgs. (22a)—(23a).

8.2. One-dimensional Case
The turbulent kinetic energy in the z-direction is given by

- = D= — -1 2_ =
(3t2w + 4T <w 3K>
2 — 1
+<1—§cs>gaw0—§e, (26a)

where turbulent kinetic energy K is given by

oK —
E—-%—D':gawe—e,

and convective flux w is given by

(26b)

%—W_B-FD" = B, w? — 2ce 1 1wl

2

+ (1 — c,)gab? + 2152 wl, (27)

where temperature variance 6 is given by

06° — P
The hydrostatic equilibrium is given
0
% P=—g4 (29a)

where the normalized gravity ¢" and superadiabatic gra-
dient " are given by

g =9 gﬁzpt >

oT ¢ oT ¢ 10
Y — =~ — — = - — . 2
B oz ¢, <1 +g oz p,) (29¢)

(29b)

© American Astronomical Society « Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJ...467..385C&amp;db_key=AST

J. . 467.-385C

BAD

rt

392 CANUTO

Some comments are in order here. The superadiabatic
gradient (23c¢) is different from the one suggested in previous
works. For example, Baker & Gough (1979) suggested (but
did not derive) that the effect of the turbulent pressure can
be accounted for by replacing P(gas + radiation) in the
standard definition of § (their eq. [2.12]) with P + p,, with
the result

or 1 0P or 1
R o Ak " (P +p), (30a)
which they write as (their eq. [2.17])
. oT g P
ﬁ*_ar_cpP+p, (305)

Neither expression for f is consistent with the Reynolds
stress model (eqs. [23¢] and [29¢]). Cox & Giuli (1968, fn.,
p- 295), on the other hand, suggest the expression

1 op,
+g 62)’

which is closer to our result, equation (29c¢).

Solution of the above equations, using the diffusion terms
derived in C93, offers the most complete description of
overshooting. In the case of the strongly convective planet-
ary boundary layer, the above equations were solved and
shown to give very good results (Canuto et al. 1994a).

(30c)

8.3. Local, Stationary Limit: Exact Solutions

Next, we solve the above system of equations in the local,
stationary limit
0 0*
'6—t=0, D,—-0, % - — AT 2,
These solutions serve to clarify many of the properties of the
system and as a check of the full numerical solutions. We
begin with the following basic turbulence relations

T=2Ke !,

e=c K3, ¢ =x 2 3/2.
€ e 3 Ko

The first relation is the assumption that the dissipation
timescale of potential energy is proportional to that of tur-
bulent kinetic energy, which is valid as long as the stratifi-
cation is unstable; the second relation is the definition of the
timescale 7, while the third and fourth relations result from
substituting the Kolmogorov law (14a) into equation (1a)
and integrating from =// to infinity. L

Next, from equation (26¢) we have that € = gawf and
write € = gafix®, so as to introduce the dimensionless func-
tion ®. We derive

(31a)

€ = 2,7 6%,

(31b)

(31¢c)

Ky ™' =2c7*3(SD) R, 12N =4c 7 *PS(S®) 3 (31d)
where
S = gaply~? (31e)
Solving equations (26)—(28), we obtain:
1. Turbulent kinetic energy K :
— 3 —2/3 2/3 X g .
K= 37 Ko (SD) <7> ; (32a)

Vol. 467
2. Turbulent kinetic energy in the z-direction:
1= 1 2
S =3 K[l + 5 1- cs)} ; (32b)
3 Temperature variance 6 :
= 02 = (14 2¢c, Pe)” 1<I)< ) (1) ; (32¢)
4. Potential energy, PE (N? = gaf):
1 — A 2 2
=3 6%(g)*N~2 = (1 + 2¢, Pe)‘lS(I)<7) (%) ;
(32d)
5. Velocity-temperature correlation (convective flux):
wh =y ; (32¢)
® = Ko? C(Pe)St/? (326)

C(Pe) = <§>1/2|:1 + cz (I —¢s)+3(1 —cy) Pe
4

L0, ot | (—F V.
X( + Zc, e) 1+2€6 Pe B ( g)

6. Peclet number Pe:

202
Pe=""= 02/3( > (SO)3 .
g

Equation (32f) is actually a cubic equation in Pe that can
be solved to obtain the desired ® versus S relationship.
However, the form (32f) is physically more appealing for it
exhibits some interesting features:

(32h)

1. The convective flux scales like the cube of the Kolmo-
gorov constant, a dependence already found in two pre-
vious models.

2. In the high-efficiency regime, y - 0, Pe > 1, and we
have

® = Ko® CS2, (32i)
where the constant C is
C = C(0)
27 1/2 2 3 3/2 1 3/2
=|— 1+—(1 - — (1 - —
(”4> [ * Cq ( ¢+ 2¢, ( C7)] (206) ’
(32))

so that ® ~ §'?, as predicted by both MLT and the
CM-CGM models.
3. In the low-efficiency regime, Pe < 1, we derive

A 6
® =Kol <7> CoS8°, (32k)
with
8 2 3
Co=— l:l +—1- Cs)] (321)
Cq

The flux scales like Ko® and S2, in accordance with the
CM-CGM models. The $? dependence is also found in the
MLT. To evaluate the numerical coefficient in front of S2,
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we use the CM and CGM models (eqs. [15¢]) and obtain
Al=9x 1072

4. Finally, we compute the constants C’s in equations
(32j) and (32k). Using the values (Canuto 1992, eq. [44d])

¢, =2, ¢;,=175, ¢5=03, ¢4=375, ¢;,=025,
(33a)
we obtain
C=93x10"%2, C,=473, (33b)
so that, using equation (14b), we have (eq. [321]):
04 <Ko* C <064, (33¢)
® = (0.4-0.64)S1/% | (33d)
to be contrasted with (eq. [15¢]):
O(MLT) = 0.1765%/2 . (33e)

The new flux is (2.2-4) times larger than the MLT value. To
recover the MLT value from the Reynolds stress model, one
must take Ko = 1.23, which is totally outside the experi-
mental range (eq. [ 14b]).

Thus, quite a different methodology leads us to the same
conclusion that the MLT underestimates the convective
flux.

9. TURBULENT VISCOSITY

In turbulence studies, the concept of turbulent viscosity v,
and/or turbulent conductivity has proven very useful. Here,
we show that the traditional definitions borrowed from
flows where radiative losses play no role cannot be used in
stars for they lead to inconsistencies. A new expression is
then suggested. We begin by writing

wl = 7,8, = B, 1@ (34a)

and inquire whether the well-known Kolmogorov—Prandtl
expression for y,,

K2
xt~vl~K1/zl=at_1C”—€—, (34b)
is valid for both efficient and inefficient convection. Here, o,
is the turbulent Prandtl number (~0.5-0.72) and the coeffi-
cient C, is traditionally taken to be 0.09-0.11 in neutrally
stratified flows. Substituting the second relation of equation
(34b) into equation (34a), we derive

C\'"* K
D= (f) X—N . (34c)
With the K given by equation (32a), we obtain
® = as*’?, (34d)
a=%4Ko*n"%C,/o)*. (34e)

Equation (34d) does not coincide with the general expres-
sion (32f), only with its high-efficiency limit, equation (32i).
Thus, equation (34b) is incomplete and a Pe-dependent
function is required to obtain a result consistent with equa-
tion (32f). This is achieved by changing the second relation
of equation (34b) to

to= = Y(Pe) (34
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with

811:2 2/3
Y(Pe) = [37— C(Pe)] , (34g)
where C(Pe) is given by equation (32g). Equation (34f) is the
new expression for the turbulent conductivity that we
suggest should be used. Of course, equation (34f) coincides
with equation (32¢) that

X=xD. (34h)

10. NEW FLUX CONSERVATION EQUATION

The mean temperature profile is derived upon solving
equation (25b). In general, it is advisable not to take the
stationary case from the very beginning but rather solve
equation (25b) with D/Dt — /0t as it corresponds to the
case of no mean flow. In the stationary case, equation (25b)
becomes the flux conservation law (Canuto 1993)

Frad+Fconv+FKE=Flot> (35&)
where
0 — 0 —
2Fxg = gutE, — wh + E, — w?
0z 0z
2 0 az 0
+(gat)’E; — 0 + 2E, — K. (36a)
0z 0z
The four functions E, have the form
E, = E, ww? + E;, gat*wl , (36b)

while the dimensionless functions Ey, , are given in Appen-
dix B of Canuto (1993). The variable t can be expressed via
equations (31d). The second-order moments are given by
equations (32a)-(32h). Contrary to the standard case, equa-
tion (35a) is no longer an algebraic relation but a differential
equation. It would be interesting to sec what results one
obtains in the case of the sun where one can constraint the
resulting T(z) versus z profile using helioseismological data.
The physical reason why we suggest this new method is
because in the middle of the convective zone (CZ), Fgg is
probably rather small due to the flatness of the second-
order moments. However, when approaching the bound-
aries of the CZ, the second-order moments exhibit
significant curvatures yielding a nonzero Fyg, which may
even be larger than F

conv*

11. TURBULENT PRESSURE

Before we use the Reynolds stress model to compute the
turbulent pressure p,, we present some physical arguments
as to its expected form. Since p,/p has the dimension of
energy, we need a length and a timescale. The first is [, while
the second depends on whether convection is efficient or
inefficient. In the case of efficient convection, Pe > 1, the
timescale is given by equation (6g) and using the first rela-
tion of equation (6a), we have

()~
X l )

The first relation shows that y does not enter the problem,
as expected. The last expression is constructed to exhibit
the fact that (y/])? is the natural unit for p,. If we take the

(37a)
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thermal pressure to be p,, ~ gH,, we have

D: ! )2

—~{—=]) V-V,

Din (H P *
and since in this case V — V4 ~ O(10~#), one can expect a
small contribution from p,.

In the case of inefficient convection, Pe < 1, the timescale
is given by equation (8b) and so we expect that

ool oo

l 2
LN (F) (V= V.0 . (39)

pth P

Contrary to the previous case, here V — V,4 ~ O(1) and
S ~ O(1), so that even if / is smaller than the previous case
(I ~ z, where z is the distance to the nearest wall), the contri-
bution from p, is expected to be nonnegligible. A complete
model must yield an expression that reduces to equations
(37a) and (38) in the two limits. From equation (32b), we
derive

(37b)

In this case

1 2
p"'pi=5Ko ca”(sm)z“(’—l‘) : (40)

where ® and C,, are given by equations (32f) and (32]). It is
easy to check that in the two limits, equations (32i) and
(32k), equation (40) reduces to equations (37a) and (38),
respectively. Equation (40) is the expression for the turbu-
lent pressure within the one-point closure, Reynolds stress
model.

In the case of a two-point closure model which yields the
energy spectrum E(k), the turbulent pressure is computed
via the expression (Canuto et al. 1996b; CGM model)

o1, =(8nz)—1/z[ Hdk dk’ sin E(REK) |k — K| _4]1/2

(41

where ¢ is the angle between k and &'. In the case of the new
CGM model, the result is

Ko\ ¢ 7\
: pip, = 04689 — ) [ == )s( £
S>1: p7ip,=0 689(1‘5_) (0.72)5(1) , (42a)

K 3 2
S <1: p~ip, = 53408 x 10—4<1—‘5’) 52@) .(42b)
The formula for arbitrary S values can be found in the
CGM paper. As one can notice, the one-point closure Rey-
nolds stress model and the two-point closure CGM model
yield very similar results.

12. RADIATIVE LAYER ON THE CONVECTIVE FLUX

We consider the effect that a convectively stable layer has
on the convective flux F . The physical implications of such
a layer depend on the values of the temperature gradients in
the two regions. In the absence of a stable layer, it is known
that convection sets in when the Rayleigh number is larger
than the critical value (Ra), = 675.5. The presence of a
stable layer can either facilitate the onset of convection (if
Ra, < 6300, where Ra, is the Rayleigh number of the stable
layer) or hinder it Ra, > 6300. In general, when S, (where

Vol. 467

the subscript ¥ means unstable) is very large (>10°), the
effect of the stable layer is small; on the other hand, for
S, < 104, the stable layer affects the growth rates and thus
the convective flux since F, ~ w® We define the geometry
as follows

0 < z < D, convectively unstable layer, V- V,, >0,
(43a)

D <z < o0, convectively stable layer, V—V,, < 0.
(43b)

At the boundary z = D, the velocity w is no longer zero, as
in the derivation of equation (11); rather, at z = D, the
velocity must be continuous while it vanishes at z = 0 and
z = 0. Atz = D, one imposes that the functions

wiz), wz), n=1,...,5, (43c)

where (n) denotes the nth derivative, be continuous. The
linear stability analysis can be carried out exactly with the
following result for the growth rate w(k). Consider equation
(11). For ¢ =0 and with x = k2/k2 and k, =nn, n =0, 1,
..., we have

20(k) = —xk* + [x*k* + 4gap(l — n’*n?/kH]V?  (44)

Savolainen, Canuto, & Schilling (1992, hereafter SCS) have
shown that the growth rate corresponding to equations
(43a)—(43b) can be cast in the form (44), with kD = ¢,

2x/DY)w(k) = —g* + [g* + 4S(1 — n*n’/g*)]"* (45)

provided both n and S are now functions of the two vari-
ables

S,=ga|B,|D*¢ "%, S,=ga|B|D* "%,

_ ot (or
T oz 0z /a

and the subscripts # and s refer to the unstable convective
region (CZ) and to the stable one (radiative region). The
parameterization suggested by SCS is

(46a)

(46b)

S= Su[l +F cXp (_a6q_L)] s, B —=-(41 + a2x°'55)_1 +a3 s

(47a)
F=(ay+asx )71, x=][B,I/8I.
Moreover,
4
a=Ya;t'"t, i=1,...,5 t=logS,, (47b)
j=1
ag=(1.5+07x"%%"1 4+02. @47¢)

The coefficients a;; are given by equation (14) of SCS.

Following a procedure analogous to the one used in § 4,
we derive the following results. In lieu of equations (14¢)-
(14f), we now have

O = (3 KoPSII[(1 + A2 — 113¢%,  (48a)

where
b =31+ —1]"T—-1, (48b)
I= £ R dx[1+ xT3AM]" 1’2A(x)[1 _ % ﬁ Ed?c A(x)],
(48¢)
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A(x) = 4% [1——"i’ix—2}[1 + F exp (—agq.)]
- % (k() D)2 p 6d1)1
(48d)
A=Ax=1), T, =gaP,x *ko*. (48¢)

The remaining symbols have already been defined. Even
though the integration in equation (48c) can in principle be
carried out analytically, the result is a generalized hypergeo-
metric function that is not easier to handle (numerically)
than the integral itself. The distance D is not known a priori
but it must be computed self-consistently through an iter-
ative procedure.

13. FUTURE RESEARCH

Even though from the point of view of turbulence model-
ing and performance versus a variety of data, the CM model
is quite satisfactory, we view it as the first of a hierarchy of
post-MLT models that ought to be constructed and tested.
Specifically:

1. The CM model—In this model one employs the linear
growth rate to quantify the rate of energy input. Due to the
long lifetimes of the large eddies, this is not a bad approx-
imation but it must be improved. In Canuto et al. (1988), it
was shown that a self-consistent method exists whereby the
growth rate is computed as a function of the turbulence
itself, and one may expect that such an effect will lower the
convective flux, mostly in the low S regime. In fact, one such
model has recently been constructed (Canuto et al. 1996b)
with the following result: the CM results remain unchanged
in the high S regime while at low S, the new flux is 3 times
smaller than the MLT value, rather than 10 times smaller,
as predicted by the CM model. The comparison is, however,
not quite complete since in the new model the nonlinear
interactions are not treated with the same model as in CM.
Thus, the self-consistent growth rate ought to be computed
not only with the simplified representation of the nonlinear
interactions used by CGM but also with the more complete
model used in CM.

2. Two-point closure models—The challenge is to do
away entirely with the growth rates. This can be accom-
plished if one solves the dynamic equations for the relevant
fluxes

Wl = J H(k)dk | (49)
197 = JG(k)dk , (50)
12 = f E(k)dk . (51)

The equations in question are (Yamaguchi 1963; Canuto et
al. 1988)

(% + 2vk2>E(k) = gaH(k) + Tg(k), (52a)
(6% + 2)(k2>G(k) = BH(k) + Tg(k) , (52b)

[a% + v+ x)kZJH(k) = %thE(k) + % gat2Glk) + Ty(k)

(52¢)
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Clearly, at this stage one has to specify the transfer terms T
to represent the effect of the nonlinear interactions. One
may employ for the form used in CM, equation (21):

Tyk) = ; :dp dq E(q)[k*E(p) — p*E(k)]alp, g, k)O(k, p, g) ,
(53a)

To(k) = j :dp dq E(q)[k*G(p) — p*G(k)1b(p, g, k)B(k, p, q) ,
(53b)
Tk) = —K*[v (k) + x k)] , (53¢)

where the functions a and b are geometrical factors, denote
the turbulence timescales, x/(k) = o,v{k), where o, is the
turbulent Prandtl number, and A assures momentum con-
servation,p + q = k.

3. One-point closure models.—Two-point closure models
can account for the full energy spectrum (e.g., the CM
model) but cannot account for the effects of inhomoge-
neities and anisotropy. Since the latter are important for
describing overshooting and the coupling of pulsation to
convection, one must resort to another turbulence model.
The most appropriate is the Reynolds stress model, which,
in its incompressible version, has not yet been fully
employed in either case. Since such a model has been suc-
cessfully used in describing the strongly convective planet-
ary boundary layer (Canuto et al. 1994a) and the interaction
between shear, vorticity, and buoyancy (Canuto et al.
1994b), the model ought to be used in the context of
helioseismology.

4. Effect of radiative (stable) layer.-—It is known that the
presence of a stable layer on top of an unstable layer can
either enhance or hinder the convective instability, depend-
ing on the ratio of the temperature gradients in the two
regions. No comprehensive treatment of this phenomenon
has yet been given. In § 12, we have sketched what we con-
sider the first step in that direction. Rather than using an
MLT approach, we have worked out the expression for the
convective flux in the case of an energy spectrum represent-
ed by a Kolmogorov law since we have previously seen that
it is a good representation of the more complete energy
spectrum. The model can be easily incorporated in a stellar
structure code and its effects tested.

14. CONCLUSIONS

It is generally agreed that a theory cannot be proved,
only disproved, and that a theory that cannot be falsified is
not a physical theory. In that sense, MLT and the
CM-CGM models differ quite substantially. The MLT can
(almost) never be falsified since the parameter o makes
MULT adaptable to almost all circumstances, if one of course
is not uncomfortable with using different «’s in different
astrophysical situations. Among other reasons (e.g., lack of
alternatives), this illusory resiliency of the MLT may have
been at the root of its longevity in spite of the fact that in
fields other than astrophysics where turbulent convection is
important, the MLT has been forsaken in favor of more
predictive models. The flexibility provided by « has regret-
tably been misconstrued as a sign of physical robustness,
thus ultimately acting as a disincentive toward the con-
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struction of better models. In that sense, the ML T may have
unwittingly been an impediment to further progress. In fact,
turbulent heat transport is the only process in stellar struc-
ture studies that has not been changed since the MLT was
proposed some 30 years ago. On the other hand, the
CM-CGM models are falsifiable since the predictions are
unequivocal: the absence of adjustable parameters prevents
us from being mislead into believing that these models will
last forever. The primary goal of the CM—CGM models was
to remove the one-eddy MLT approximation and to

account for the full eddy spectrum. The CM-CGM models
are of course perfectible. For this reason, we have discussed
a set of improved models that ought to be constructed as
successors of the CM—CGM models. The one-point closure
model based on the Reynolds stress procedure is the best
example.

The author wishes to thank F. Kupka, I. Goldman, and
P. Fox for suggestions that improved the paper.
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